Add like
Add dislike
Add to saved papers

Towards Printable Natural Dielectric Cloaks via Inverse Scattering Techniques.

Scientific Reports 2017 June 17
The synthesis of non-magnetic 2D dielectric cloaks as proper solutions of an inverse scattering problem is addressed in this paper. Adopting the relevant integral formulation governing the scattering phenomena, analytic and numerical approaches are exploited to provide new insights on how frequency and direction of arrival of the incoming wave may influence the cloaking mechanism in terms of permittivity distribution within the cover region. In quasi-static (subwavelength) regime a solution is analytically derived in terms of homogeneous artificial dielectric cover with ε < ε 0, which is found to be a necessary and sufficient condition for achieving omnidirectional cloaking. On the other hand, beyond quasi-static regime, the cloaking problem is addressed as an optimization task looking for only natural dielectric coatings with ε > ε 0 able to hide the object for a given number of directions of the incident field. Simulated results confirm the validity of both analytic and numerical methodologies and allow to estimate effective bandwidths both in terms of frequency range and direction of arrival of the impinging field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app