Add like
Add dislike
Add to saved papers

Bioremediation using Gracilaria lemaneiformis to manage the nitrogen and phosphorous balance in an integrated multi-trophic aquaculture system in Yantian Bay, China.

To reduce negative environmental impacts from human aquaculture activities, the red alga Gracilaria lemaneiformis was co-cultured with the fish Pseudosciaena crocea in an integrated multi-trophic aquaculture (IMTA) system for 35d in Yantian Bay. The eutrophication index value decreased from 14.5 to 8.4 after seaweeds were co-cultured in cage farming areas, which indicated that the eutrophic water column in Yantian Bay could be mediated by IMTA. Total DIN and DIP of the tidal input and output were 9.23kg, 0.19kg and 11.08kg, and 0.27kg, respectively. Total 5.24kg of dissolved N and 0.81kg of dissolved P were released from IMTA system. These results indicate that G. lemaneiformis co-cultured in IMTA system could not completely remove all excess nutrients. In theory, at least 324.48kg of seaweed seedlings would be required to balance excess nutrients generated from fish cages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app