Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Microvascular fluid exchange during CPB with deep hypothermia circulatory arrest or low flow.

Perfusion 2017 November
OBJECTIVE: Use of deep hypothermic low-flow (DHLF) cardiopulmonary bypass (CPB) has been associated with higher fluid loading than the use of deep hypothermia circulatory arrest (DHCA). We evaluated whether these perfusion strategies influenced fluid extravasation rates and edema generation differently per-operatively.

MATERIALS AND METHODS: Twelve anesthetized pigs, randomly allocated to DHLF (n = 6) or DHCA (n = 6), underwent 2.5 hours CPB with cooling to 20°C for 30 minutes (min), followed by 30 min arrested circulation (DHCA) or 30 min low-flow circulation (DHLF) before 90 min rewarming to normothermia. Perfusion of tissues, fluid requirements, plasma volumes, colloid osmotic pressures and total tissue water contents were recorded and fluid extravasation rates calculated. During the experiments, cerebral microdialysis was performed in both groups.

RESULTS: Microvascular fluid homeostasis was similar in both groups, with no between-group differences, reflected by similar fluid extravasation rates, plasma colloid osmotic pressures and total tissue water contents. Although extravasation rates increased dramatically from 0.10 (0.11) ml/kg/min (mean with standard deviation in parentheses) and 0.16 (0.02) ml/kg/min to 1.28 (0.58) ml/kg/min and 1.06 (0.41) ml/kg/min (DHCA and DHLF, respectively) after the initiation of CPB, fluid filtrations during both cardiac arrest and low flow were modest and close to baseline values. Cerebral microdialysis indicated anaerobic metabolism and ischemic brain injury in the DHCA group.

CONCLUSION: No differences in microvascular fluid exchange could be demonstrated as a direct effect of DHCA compared with DHLF. Thirty minutes of DHCA was associated with anaerobic cerebral metabolism and possible brain injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app