Add like
Add dislike
Add to saved papers

Synthesis and Electrochemical Properties of LiNi0.5Mn1.5O4 Cathode Materials with Cr(3+) and F(-) Composite Doping for Lithium-Ion Batteries.

A Cr(3+) and F(-) composite-doped LiNi0.5Mn1.5O4 cathode material was synthesized by the solid-state method, and the influence of the doping amount on the material's physical and electrochemical properties was investigated. The structure and morphology of the cathode material were characterized by XRD, SEM, TEM, and HRTEM, and the results revealed that the sample exhibited clear spinel features. No Cr(3+) and F(-) impurity phases were found, and the spinel structure became more stable. The results of the charge/discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) test results suggested that LiCr0.05Ni0.475Mn1.475O3.95F0.05 in which the Cr(3+) and F(-) doping amounts were both 0.05, had the optimal electrochemical properties, with discharge rates of 0.1, 0.5, 2, 5, and 10 C and specific capacities of 134.18, 128.70, 123.62, 119.63, and 97.68 mAh g(-1) , respectively. After 50 cycles at a rate of 2 C, LiCr0.05Ni0.475Mn1.475O3.95F0.05 showed extremely good cycling performance, with a discharge specific capacity of 121.02 mAh g(-1) and a capacity retention rate of 97.9%. EIS test revealed that the doping clearly decreased the charge-transfer resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app