Add like
Add dislike
Add to saved papers

Noninvasive In-Situ Measurement of Blood Lactate Using Microwave Sensors.

GOAL: This paper reports a novel electromagnetic sensor technique for real-time noninvasive monitoring of blood lactate in human subjects.

METHODS: The technique was demonstrated on 34 participants who undertook a cycling regime, with rest period before and after, to produce a rising and falling lactate response curve. Sensors attached to the arm and legs of participants gathered spectral data, blood samples were measured using a Lactate Pro V2; temperature and heart rate data was also collected.

RESULTS: Pointwise mutual information and neural networks are used to produce a predictive model. The model shows a good correlation between the standard invasive and novel noninvasive electromagnetic wave based blood lactate measurements, with an error of 13.4% in the range of 0-12 mmol/L.

CONCLUSION: The work demonstrates that electromagnetic wave sensors are capable of determining blood lactate level without the need for invasive blood sampling.

SIGNIFICANCE: Measurement of blood metabolites, such as blood lactate, in real-time and noninvasively in hospital environments will reduce the risk of infection, increase the frequency of measurement and ensure timely intervention only when necessary. In sports, such tools will enhance training of athletes, and enable more effecting training regimes to be prescribed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app