JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Combating breast cancer with non-steroidal aromatase inhibitors (NSAIs): Understanding the chemico-biological interactions through comparative SAR/QSAR study.

It is a challenging task to design target-specific and less toxic non-steroidal aromatase inhibitors (NSAIs) though the modeling studies for designing anti-aromatase molecules have been continuing for more than two decades to fight the dreaded estrogen-dependent breast cancer. In this article, different validated QSAR models are developed and analyzed to understand important physicochemical and structural parameters modulating the aromatase inhibitory activity of NSAIs. Physicochemical properties such as molar refractivity and dipole moment are found to be the most important parameters for controlling aromatase inhibition. This indicates the characteristic of bulky, complex and steric properties as well as, the flexibility of molecules is playing pivotal roles for aromatase inhibition. In many cases, hydrophobicity also plays important contribution. Regarding the structural point of view, some important indicator parameters are also found to be important for aromatase inhibitory activity. Though azole function is playing a crucial role by coordinating the heme moiety of the aromatase enzyme, the imidazole or the imidazolylmethyl ring systems may be better NSAIs than triazole, tetrazole or other azoles. The 4-pyridylmethyl group containing compounds are also found to be better NSAIs. The QSAR study, in a nutshell, provides a detailed understanding of the effectivity of NSAIs which is dependent mainly on the shape and size as well as the steric features of molecules and the heme-coordinator azole functions. These findings may open up a new horizon for designing new potential NSAIs that can be effective to reduce the mortality rate of breast cancer in future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app