Add like
Add dislike
Add to saved papers

Kinetic and isotherm studies on adsorption of toxic pollutants using porous ZnO@SiO 2 monolith.

Removal of toxic effluents (like dyes and pesticides) by cost-effective and user-friendly method is needed to provide sustaining the environment for civilization. Here, low-cost mesoporous silica monolith (SiO2 ) and silica supported metal-oxide (ZnO@SiO2 ) monolith were synthesized to reduce the solemn impact of toxic effluents. Batch experiments were performed to remove Alizarin (AZ), Paradol (PD), Acid blue-113 (AB) and Rhodamine-B (RD) from aqueous solution via synthesized monoliths. The influence of various parameters (like pH, contact time, temperature and adsorbate concentration) has been optimized. The maximum adsorption capacity of ZnO@SiO2 monolith is 625, 500, 714 and 555mg/g for AZ, RD, AB, and PD respectively. The adsorption for AZ, PD, AB, and RD is spontaneous and exothermic. The adsorption process can be well described by the pseudo-second-order kinetic model (high regression coefficients) and the Freundlich isotherm model (R2 =0.97-0.99).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app