Add like
Add dislike
Add to saved papers

A role for neurokinin-1 receptor neurons in the rostral ventromedial medulla in the development of chronic postthoracotomy pain.

Pain 2017 July
Thoracotomy results in chronic postoperative pain (CPTP) in half of the cases. Earlier findings in rat models of persistent post-surgical pain suggest that spinal pathways are critical for pain onset but not its maintenance. Descending systems from the brain stem modulate nociceptive transmission in the spinal cord and contribute to persistent pain, but their role in chronic postoperative pain has not been studied. Here, we ablated pronociceptive neurokinin-1 receptor (NK-1R)-expressing neurons in the rat rostral ventromedial medulla (RVM) to identify their role in CPTP. Cells were ablated by microinjection of the neurotoxin Sar, Met(O2)-Substance P (SSP-SAP), either 2 to 3 weeks before ("Prevention" condition) or 10 days after ("Reversal" condition) thoracotomy with rib retraction. Inactive Blank-SAP was the control. Tactile hypersensitivity was defined by lowered force thresholds for nocifensive responses to von Frey filaments applied over the dorsal trunk, and pain-like behavior assessed by the Qualitative Hyperalgesia Profile; both were followed for 5 weeks after surgery. SSP-SAP injection before surgery resulted in ∼95% loss of NK-1R neurons in RVM and prevented postoperative mechano-hypersensitivity. Blank-SAP was ineffective. SSP-SAP given at postoperative day 10 was equally effective in ablating NK-1R neurons but fully reversed mechano-hypersensitivity in only 3 of 9 hypersensitive rats. Fewer rats showed intense pain-like behavior, by Qualitative Hyperalgesia Profile analysis, in the Prevention than in the Control conditions, and the more intense pain behaviors declined along with SSP-SAP-induced Reversal of hypersensitivity. Neurokinin-1 receptor-expressing neurons in RVM appear essential for the development but contribute only partially to the maintenance of CPTP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app