Add like
Add dislike
Add to saved papers

Mimicking the Active Sites of Organophosphorus Hydrolase on the Backbone of Graphene Oxide to Destroy Nerve Agent Simulants.

Recent global military events, such as the conflict in Syria, have emphasized the need to find effective strategies to rapidly destroy organophosphorus-based nerve agents. In this work, we designed active site-engineered graphene oxide (GO) via polymerization (polymer bead-GOs) as organophosphorus hydrolase (OPH) mimetic hotspots for the rapid degradation of nerve agents. This hybrid catalyst has a high total turnover frequency value of 0.65 s-1 and good stability (94.8% activity maintained after 5 cycles). Mechanism investigations suggested that the high catalytic performance could be attributed to the synergistic effect among the clusters of imidazole and the presence of - COOH groups on the GO surface and Zn2+ .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app