Add like
Add dislike
Add to saved papers

On-Demand Capture and Release of Organic Droplets Using Surfactant-Doped Polypyrrole Surfaces.

In this paper, we demonstrate the controlled capture and release of dichloromethane (DCM) droplets on dodecylbenzenesulfonate-doped polypyrrole (PPy(DBS)) surfaces in an aqueous environment. The droplets captured on oxidized PPy(DBS) surfaces were released on-demand via a reduction process at ∼0.9 V, with controlled release time and droplet morphology. The release time of an entire droplet (2 ± 1 μL) was proportional to the thickness of the PPy(DBS) coating, increasing from 11.5 to 26.3 s for thicknesses ranging from 0.6 to 5.1 μm. The droplet-release time was also affected by the redox voltages, and among the tested redox voltages, the fastest release was achieved at -0.9/0.1 V. The PPy(DBS) surfaces with larger thicknesses were more durable for the droplet capture and release. The droplets were more rapidly released from PPy(DBS) surfaces with increased surface roughness ratios, such as 6.0 s on a micropillared surface and 10.3 s on a meshed surface, as compared to 14.6 s on the 1.8 μm thick PPy(DBS) surfaces coated on frosted-glass substrates (i.e., with random microstructures). The release of a single droplet was achieved by increasing the underwater oleophobicity of PPy(DBS) surface via O2 plasma treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app