Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

AB Initio Prediction of Stable Confomeric Polymorphs of Benzocaine Molecule- a Local Anaesthatic Molecule.

An ab initio methodology to predict the crystal structures of thermodynamically stable polymorphs of benzocaine within the least energy region of energy landscape by analyzing the local minima from the initial gas phase optimization initiated through the flexible torsion using MP2/6-31G(d,p) method. The global search for the hypothetical dense packing for the structures within the energy penalty region of the local minima have revealed the possible stable conformers under a repulsion alone potential field. The generated hypothetical dense packings from the global search were selected for lattice minimization using the repulsion - dispersion potential field to authenticate the stability. The stability and the characteristics of the generated structures were analyzed from the comparative hydrogen bond analysis and second derivative properties with the known experimental polymorphs. The morphological studies of the global minima of benzocaine molecule from the valid lattice energy landscape was studied in detail to find the morphological important lattice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app