Add like
Add dislike
Add to saved papers

Ethylene tri-/tetramerization catalysts supported by diphosphinothiophene ligands.

Cr(iii) catalysts supported by a series of diphosphinothiophene ligands have been developed, all of which, upon activation with MMAO-3A, are active for ethylene tri-/tetramerization. The effect of ligand substitution on the catalytic performance has been examined. The Cr precatalyst supported by the diphosphinothiophene ligand containing one trimethylsilyl group at the C2 position achieved a high activity of up to 686 kg (g Cr h-1 )-1 with a total selectivity of up to 69% toward 1-hexene (29.5%) and 1-octene (39.5%). Two representative Cr complexes bearing the diphosphinothiophene ligand were synthesized and structurally characterized by single-crystal X-ray diffraction. Comparison of the coordination structure data of the two Cr complexes with those of an analogous diphosphine Cr complex reveals a direct correlation between the bond length of two adjacent bridging carbon atoms and catalytic activity: a shorter bond length and hence smaller ligand bite angle lead to higher catalytic activity. These diphosphinothiophene ligands featuring a fine-tuned backbone provide a model for the precise understanding of the impact of ligand variations on the catalytic performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app