JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genomic analysis of follicular dendritic cell sarcoma by molecular inversion probe array reveals tumor suppressor-driven biology.

Modern Pathology 2017 September
Follicular dendritic cell sarcoma is a rare malignant neoplasm of dendritic cell origin that is currently poorly characterized by genetic studies. To investigate whether recurrent genomic alterations may underlie the biology of follicular dendritic cell sarcoma and to identify potential contributory regions and genes, molecular inversion probe array analysis was performed on 14 independent formalin-fixed, paraffin-embedded samples. Abnormal genomic profiles were observed in 11 out of 14 (79%) cases. The majority showed extensive genomic complexity that was predominantly represented by hemizygous losses affecting multiple chromosomes. Alterations of chromosomal regions 1p (55%), 2p (55%), 3p (82%), 3q (45%), 6q (55%), 7q (73%), 8p (45%), 9p (64%), 11q (64%), 13q (91%), 14q (82%), 15q (64%), 17p (55%), 18q (64%), and 22q (55%) were recurrent across the 11 samples showing abnormal genomic profiles. Many recurrent genomic alterations in follicular dendritic cell sarcoma overlap deletions that are frequently observed across human cancers, suggesting selection, or an active role for these alterations in follicular dendritic cell sarcoma pathogenesis. In support of a tumor suppressor-driven biology, homozygous deletions involving tumor suppressor genes CDKN2A, RB1, BIRC3, and CYLD were also observed. Neither recurrent gains nor amplifications were observed. This genomic characterization provides new information regarding follicular dendritic cell sarcoma biology that may improve understanding about the underlying pathophysiology, provide better prognostication, and identify potential therapeutic markers for this rare disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app