Add like
Add dislike
Add to saved papers

Loading Cd 0.5 Zn 0.5 S Quantum Dots onto Onion-Like Carbon Nanoparticles to Boost Photocatalytic Hydrogen Generation.

Carbon dots (C dots, size < 10 nm) have been conventionally decorated onto semiconductor matrixes for photocatalytic H2 evolution, but the efficiency is largely limited by the low loading ratio of the C dots on the photocatalyst. Here, we propose an inverse structure of Cd0.5 Zn0.5 S quantum dots (QDs) loaded onto the onionlike carbon (OLC) matrix for noble metal-free photocatalytic H2 evolution. Cd0.5 Zn0.5 S QDs (6.9 nm) were uniformly distributed on an OLC (30 nm) matrix with both upconverted and downconverted photoluminescence property. Such an inverse structure allows the full optimization of the QD/OLC interfaces for effective energy transfer and charge separation, both of which contribute to efficient H2 generation. An optimized H2 generation rate of 2018 μmol/h/g (under the irradiation of visible light) and 58.6 μmol/h/g (under the irradiation of 550-900 nm light) was achieved in the Cd0.5 Zn0.5 S/OLC composite samples. The present work shows that using the OLC matrix in such a reverse construction is a promising strategy for noble metal-free solar hydrogen production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app