Add like
Add dislike
Add to saved papers

Multiscale Shear-Lag Analysis of Stiffness Enhancement in Polymer-Graphene Nanocomposites.

Graphene and other two-dimensional (2D) materials are of emerging interest as functional fillers in polymer-matrix composites. In this study, we present a multiscale atomistic-to-continuum approach for modeling interfacial stress transfer in graphene-high-density polyethylene (HDPE) nanocomposites. Via detailed characterization of atomic-level stress profiles in submicron graphene fillers, we develop a modified shear-lag model for short fillers. A key feature of our approach lies in the correct accounting of stress concentration at the ends of fillers that exhibits a power-law dependence on filler ("flaw") size, determined explicitly from atomistic simulations, without any ad hoc modeling assumptions. In addition to two parameters that quantify the end stress concentration, only one additional shear-lag parameter is required to quantify the atomic-level stress profiles in graphene fillers. This three-parameter model is found to be reliable for fillers with dimensions as small as ∼10 nm. Our model predicts accurately the elastic response of aligned graphene-HDPE composites and provides appropriate upper bounds for the elastic moduli of nanocomposites with more realistic randomly distributed and oriented fillers. This study provides a systematic approach for developing hierarchical multiscale models of 2D material-based nanocomposites and is of particular relevance for short fillers, which are, currently, typical of solution-processed 2D materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app