Add like
Add dislike
Add to saved papers

Linear and orthogonal peptide templating of silicified protein fibres.

Biomineralisation is essential for biology. Specialist proteins use peptide motifs that catalyse mineral deposition into nano-to-microscale inorganic materials. Unlike in native proteins, the motifs incorporated into self-assembled fibres can persistently propagate on the microscopic scale enabling empirically defined silica nanostructures. Herein we show that the two main modes of motif templating - linear and orthogonal - in self-assembling, fibre-forming peptide sequences effectively silicify protein fibres. We show that the mere charge and morphology of protein fibres are not sufficient for silica deposition, but it is the synergy between fibrillogenesis and silica-specific motifs regularly spaced in fibres that ensures silica templating, regardless of the relative orientation of the motifs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app