Add like
Add dislike
Add to saved papers

Expression of full-length HER2 protein in Sf9 insect cells and its presentation on the surface of budded virus-like particles.

Biomarkers of cancer are often glycosylated membrane receptor proteins present on the cellular surface. In order to develop new antibodies for cancer diagnostics or treatment, it is a main pre-requisite that these target proteins are available in a native conformation. However, membrane receptor proteins are notoriously difficult to produce due to their hydrophobic nature and complex architecture. Here, we used the baculovirus-insect cell expression system to produce budded virus-like particles (VLPs) as the scaffold for the presentation of complex membrane proteins. Since the human epidermal growth factor receptor 2 (HER2) is known to be overexpressed in a number of cancers it was chosen as model for a tumor antigen. VLPs displaying full-length HER2 on the surface were produced in Spodoptera frugiperda 9 (Sf9) insect cells and purified by sucrose gradient ultracentrifugation. The number of secreted particles was quantified by nanoparticle tracking analysis. To confirm the presence of HER2 protein on the surface, VLPs were labeled with gold-conjugated antibodies and analyzed by transmission electron microscopy. Functionality of displayed HER2 was investigated by ELISA and a newly established biolayer interferometry based technique. Detection was accomplished using the specific monoclonal antibody Herceptin and filamentous phages displaying a single-chain variable fragment of an anti-HER2 antibody. Significant stronger binding of Herceptin and anti-HER2 phages to HER2-displaying VLPs as compared to control VLPs was demonstrated. Thus, we suggest that Sf9 insect cells are highly feasible for the fast and easy production of various budded VLPs that serve as a platform for full-length membrane receptor presentation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app