Add like
Add dislike
Add to saved papers

Alpha/beta interferon receptor deficiency in mice significantly enhances susceptibility of the animals to pseudorabies virus infection.

Pseudorabies virus, one of the neurotropic viruses, can infect numerous mammals. In particular, pseudorabies virus infection of swine occurs worldwide, and is a major threat to swine industry. However, the mechanism underlying the interaction between pseudorabies virus and host innate immune system is not fully understood. Here, we investigated the involvement of interferon α/β (IFN-α/β) receptor (IFNAR) in the pathogenesis of pseudorabies virus in a mouse model. The results showed that IFNAR-deficient (IFNAR-/- ) mice were highly susceptible to the virus infection, as evidenced by markedly reduced survival rate of infected animals and increased viral replication. The expression of IFN-α/β and relevant interferon-stimulated genes in IFNAR-/- mice was significantly lower than that in wild-type (WT) littermates after the viral infection. Moreover, in response to the virus challenge, IFNAR-/- mice displayed elevated levels of inflammatory cytokines including interleukin 6 (IL-6) and IL-1β, and IFNAR-/- cells showed increased phosphorylation of STAT3. Collectively, these data reveal that the IFNAR-/- mice are more sensitive to pseudorabies virus infection than WT animals, and excessive IL-6/STAT3 response in IFNAR-/- mice may contribute to the pathogenesis. Our findings suggest that type I IFNs/IFNAR-dependent homeostatic control of the innate immunity is required for host defense against pseudorabies virus infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app