Add like
Add dislike
Add to saved papers

Precision and bias in estimating detection distances for beaked whale echolocation clicks using a two-element vertical hydrophone array.

Detection distances are critical for cetacean density and abundance estimation using distance sampling methods. Data from a drifting buoy system consisting of an autonomous recorder and a two-element vertical hydrophone array at ∼100-m depth are used to evaluate three methods for estimating the horizontal distance (range) to beaked whales making echolocation clicks. The precision in estimating time-differences-of-arrival (TDOA) for direct- and surface-reflected-path clicks is estimated empirically using repeated measures over short time periods. A Teager-Kaiser energy detector is used to improve estimates of TDOA for surface-reflected signals. Simulations show that array tilt in the direction of the source cannot be reliably estimated given this array geometry and these measurements of TDOA error, which means that range cannot be reliably estimated. If array tilt can be reduced to less than 0.5°, range can be reliably estimated up to ∼3000 m. If array depth is increased to 200 m and array tilt is less than 1°, range can be reliably estimated up to ∼5000 m. Prior information on the depth of vocalizing beaked whales and estimates of declination angle can be used to precisely estimate range, but different analytical methods are required to avoid bias and to treat distributions of depth probabilistically.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app