Add like
Add dislike
Add to saved papers

The impact of multiple stressors on the biomarkers response in gills and liver of freshwater breams during different seasons.

Biomarkers attract increasing attention in environmental studies, as a tool for detection of exposure and effects of pollution, from both natural and anthropogenic sources. This study aims to assess the impact of multiple stressors during distinctive seasons, covering also extreme hydrological events (extensive flooding in the mid May 2014), on different levels of biological organization in the liver and gills of three closely related freshwater breams. Our previous study on DNA damage in blood cells of these specimens showed increased DNA damage in June 2014, one month after the flooding event. As a continuation of that research, the present study was conducted. As a biomarker of exposure DNA damage was measured by applying the alkaline comet assay, while histopathological alterations were monitored as a biomarker of effect. Additionally, concentrations of metals and metalloids in gills, liver and muscle were assessed. Sampling of fish tissues was performed in 2014, during winter (January and February), spring (March and early June) and summer (late June, July and August). Significant seasonal difference in DNA damage was observed for both tissues. During spring and summer the level of DNA damage in gills was significantly higher when compared to the liver. Histopathological analyses showed higher frequency of alterations in gills during spring, and in liver during summer, but without a significant seasonal difference. Gills had the highest concentration of metals and metalloids during the spring and summer, and liver during winter. Muscle was the least affected tissue during all three seasons. This study highlighted the importance of the multiple biomarker approach and the use of different fish tissues in assessment of surface water pollution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app