Add like
Add dislike
Add to saved papers

Nonscaling displacement distributions as may be seen in fluorescence correlation spectroscopy.

A continuous time random walk (CTRW) model with waiting times following the Lévy-stable distribution with exponential cutoff in equilibrium is a simple theoretical model giving rise to normal, yet non-Gaussian, diffusion. The distribution of the particles' displacements is explicitly time dependent and does not scale. Since fluorescent correlation spectroscopy (FCS) is often used to investigate diffusion processes, we discuss the influence of this lack of scaling on the possible outcome of the FCS measurements and calculate the FCS autocorrelation curves for such equilibrated CTRWs. The results show that although the deviations from Gaussian behavior may be detected when analyzing the short- and long-time asymptotic behavior of the corresponding curves, their bodies are still perfectly fitted by the fit forms used for normal diffusion. The diffusion coefficients obtained from the fits may however differ considerably from the true tracer diffusion coefficients as describing the time dependence of the mean squared displacement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app