Add like
Add dislike
Add to saved papers

Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid.

Inertial modes are the eigenmodes of contained rotating fluids restored by the Coriolis force. When the fluid is incompressible, inviscid, and contained in a rigid container, these modes satisfy Poincaré's equation that has the peculiarity of being hyperbolic with boundary conditions. Inertial modes are, therefore, solutions of an ill-posed boundary-value problem. In this paper, we investigate the mathematical side of this problem. We first show that the Poincaré problem can be formulated in the Hilbert space of square-integrable functions, with no hypothesis on the continuity or the differentiability of velocity fields. We observe that with this formulation, the Poincaré operator is bounded and self-adjoint, and as such, its spectrum is the union of the point spectrum (the set of eigenvalues) and the continuous spectrum only. When the fluid volume is an ellipsoid, we show that the inertial modes form a complete base of polynomial velocity fields for the square-integrable velocity fields defined over the ellipsoid and meeting the boundary conditions. If the ellipsoid is axisymmetric, then the base can be identified with the set of Poincaré modes, first obtained by Bryan [Philos. Trans. R. Soc. London 180, 187 (1889)PTRMAD1364-503X10.1098/rsta.1889.0006], and completed with the geostrophic modes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app