Add like
Add dislike
Add to saved papers

Spreading law on a completely wettable spherical substrate: The energy balance approach.

The spreading of a cap-shaped spherical droplet on a completely wettable spherical substrate is studied. The nonequilibrium thermodynamic formulation is used to derive the thermodynamic driving force of spreading including the line-tension effect. Then the energy balance approach is adopted to derive the evolution equation of the spreading droplet. The time evolution of the contact angle θ of a droplet obeys a power law θ∼t^{-α} with the exponent α, which is different from that derived from Tanner's law on a flat substrate. Furthermore, the line tension must be positive to promote complete wetting on a spherical substrate, while it must be negative on a flat substrate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app