Add like
Add dislike
Add to saved papers

Contractile actuation and dynamical gel assembly of paramagnetic filaments in fast precessing fields.

Flexible superparamagnetic filaments are studied under the influence of fast precessing magnetic fields using simulations and a continuum approximation analysis. We find that individual filaments can be made to exert controllable tensile forces along the precession axis. These forces are exploited for microscopic actuation. In bulk, the filaments can be rapidly assembled into different configurations whose material properties depend on the field parameters. The precession frequency affects filament aggregation and conformation by changing the net torques on the filament ends. Using a time-dependent precession angle allows considerable freedom in choosing properties for filament aggregates. As an example, we design a field that twists chains together to dynamically assemble a self-healing gel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app