Add like
Add dislike
Add to saved papers

Exact solution for the force-extension relation of a semiflexible polymer under compression.

Exact solutions for the elastic and thermodynamic properties for the wormlike chain model are elaborated in terms of Mathieu functions. The smearing of the classical Euler buckling instability for clamped polymers is analyzed for the force-extension relation. Interestingly, at strong compression forces the thermal fluctuations lead to larger elongations than for the elastic rod. The susceptibility defined as the derivative of the force-extension relation displays a prominent maximum at a force that approaches the critical Euler buckling force as the persistence length is increased. We also evaluate the excess entropy and heat capacity induced by the compression and find that they vary nonmonotonically with the load. These findings are corroborated by pseudo-Brownian simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app