Add like
Add dislike
Add to saved papers

Experimental investigations and phase-field simulations of triple-phase-separation kinetics within liquid ternary Co-Cu-Pb immiscible alloys.

The phase-separation kinetics and microstructure evolution mechanisms of liquid ternary Co_{43}Cu_{40}Pb_{17} immiscible alloys are investigated by both the drop tube technique and phase-field method. Two successive phase separations take place during droplet falling and lead to the formation of a three-phase three-layer core-shell structure composed of a Co-rich core, a Cu-rich middle layer, and a Pb-rich shell. The Pb-rich shell becomes more and more conspicuous as droplet diameter decreases. Meanwhile, the Co-rich core center gradually moves away from the core-shell center. Theoretical analyses show that a larger temperature gradient inside a smaller alloy droplet induces the accelerated growth of the surface segregation shell during triple-phase separation. The residual Stokes motion and the asymmetric Marangoni convection result in the appearance of an eccentric Co-rich core and the core deviation degree is closely related to the droplet size and initial velocity. A three-dimensional phase-field model of ternary immiscible alloys, which considers the successive phase separations under the combined effects of Marangoni convection and surface segregation, is proposed to explore the formation mechanisms of three-phase core-shell structures. The simulated core-shell morphologies are consistent with the experimental observations, which verifies the model's validity in reproducing the core-shell dynamic evolution. Numerical results reveal that the development of three-phase three-layer core-shell structures can be attributed to the primary and then secondary phase separations dominated simultaneously by Marangoni convection and surface segregation. Furthermore, the effects of droplet temperature gradient on the growth kinetics of the surface segregation shell are analyzed in the light of phase-field theory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app