Add like
Add dislike
Add to saved papers

Characterization and quantification of chromate adsorption by layered porous iron oxyhydroxide: An experimental and theoretical study.

The inner structure of iron oxyhydroxide agglomerates (IOAs) prepared from hydrolysis of ferric chloride was characterized and correlated to surface complexation of hexavalent chromium, Cr(VI), in a broad range of pH (3-12) and ionic strengths (0.0-5.0M). Evolution of particle size, morphology, and surface activity, combined with density functional theory (DFT) calculations, support the condensation reaction initiated formation of IOAs in three levels: iron nanoparticles to nanolayers to agglomerates. This agglomeration process led to a layered porous structure for aqueous-phase IOAs resulting in a rapid and high removal of Cr(VI) in batch tests. By integrating adsorption results, thermodynamic modeling, and quantum chemical calculations for the adsorption reactions, a quantitative distribution profile for each surface coordination of Cr(VI) ions (i.e., monodentate, bidentate, and hydrogen-bonding) was established. Results of this study are important to understand the fundamental mechanism of IOAs formation in aqueous phase and the intrinsic nature of surface complexations at the mineral-water interface for optimal Cr(VI) removal in hypersaline waste streams.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app