Add like
Add dislike
Add to saved papers

A metabolite of leucine (β-hydroxy-β-methylbutyrate) given to sows during pregnancy alters bone development of their newborn offspring by hormonal modulation.

The effects of dietary β-hydroxy-β-methylbutyrate (HMB) supplementation during gestation on bone, growth plate, and articular cartilage in newborns were determined. Thermal analysis of articular cartilage was performed to examine the structural changes in collagen. At day 70 of gestation, a total of 12 sows (Large White Polish breed, at the second parity) were randomly assigned to two groups, with each group receiving either a basal diet or the same diet supplemented with 0.2 g/day HMB until the 90th day. Maternal HMB supplementation enhanced body weight, bone length, and diameter in males. It also improved geometric and mechanical properties contributing to increased bone morphology and endurance. In turn, alteration of the length was only observed in females. The positive effects were mediated by increased serum concentrations of insulin-like growth factor-1 and leptin. HMB-treatment enhanced the concentration of FSH, LH, estradiol, and testosterone. Serum TAP was enhanced by the HMB-treatment by 34% in females and 138% in males. Beneficial effects of the HMB-treatment on trabecular bone and content of proteoglycans in articular cartilage were shown. The HMB-treatment significantly changed the collagen structure in cartilages, especially in the females, which was demonstrated by the PSR analysis. Differences between the HMB-supplemented and the control females in the calorimetric peak temperatures were presumably related to different collagen fibril density in the articular cartilage structure. In summary, maternal HMB supplementation in the mid-gestation period significantly improved general growth and mechanical endurance of long bones by the influence on the somatotropic and pituitary-gonadal axes in the offspring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app