Add like
Add dislike
Add to saved papers

ToF-SIMS Depth Profiling of PS-b-PMMA Block Copolymers Using Arn(+), C60(++), and Cs(+) Sputtering Ions.

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a high performance tool for molecular depth profiling of polymer films, in particular when they are structured in microphases. However, a major issue is the degradation of polymer materials under ion irradiation in reactions such as cross-linking, chain breaking, or reorganization processes of polymers which have been demonstrated for materials such as polystyrene (PS) and poly(methyl methacrylate) (PMMA). This work aims at comparing ToF-SIMS molecular depth profiling of structured polymers (polystyrene (PS)-b-polymethyl methacrylate (PMMA) block copolymers (BCP)) using either ultralow energy cesium or the more recently introduced C60(++) (under NO dosing and with sample cooling) and argon cluster ion beams (using Ar1500(+) ions at 5 keV). The latter improved the quality of the depth profiles, especially the argon cluster ion beam, as it is characterized by a greater homogeneity for the sputter yields of PS and PMMA. No significant artifacts were observed, and this was confirmed by the comparison of depth profiles obtained from films with variable thickness, annealing time, and morphology (cylindrical blocks vs spherical blocks). Comparison to a theoretical model (hexagonal centered pattern) ensured that the ToF-SIMS depth profiles described the real morphology and may thus be a relevant characterization tool to verify the morphology of the films as a function of the deposition parameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app