Add like
Add dislike
Add to saved papers

Blockade of IL-17 alleviated inflammation in rat arthritis and MMP-13 expression.

OBJECTIVE: Rheumatoid arthritis (RA) is one systemic auto-immune disorder featured as chronic synovitis and can destruct joint cartilage. Fibroblast-like synoviocyte (FLS) secretes various factors affecting chondrocyte matrix and degradation. This study thus investigated the effect of interleukin-17A (IL-17A) on FLS and osteoclast.

MATERIALS AND METHODS: Type II collagen-induced arthritis (CIA) rats were assigned to CIA model, CIA + IgG1 isotype, and CIA + Anti-Rat IL-17A groups. Tissue volume and arthritis index (AI) evaluated arthritis condition. ELISA and flow cytometry measured IL-17A content and Th17 cell percentage in joint cavity fluid. Matrix metallopeptidase 13 (MMP-13) and collagen type II alpha 1 (COL2A1) expression in synovial tissues were compared. FLS-osteoclast co-culture system was treated with IL-17A + IgG1 Isotype or CIA + Anti-Rat IL-17A. MMP-13 and COL2A1 expression were compared.

RESULTS: CIA model rats had significantly higher IL-17A and Th17 cell ratio in joint cavity fluid. Injection of Anti-Rat IL-17A decreased AI and tissue volume in model rats, decreased MMP-13 while increased COL2A1 expression in synovial or cartilage tissues. IL-17A treatment remarkably up-regulated MMP-13 mRNA or protein expression in chondrocytes. Anti-IL-17A weakened effects of IL-17A on FLS or chondrocytes.

CONCLUSIONS: IL-17A inhibits COL2A1 mRNA and protein expression of chondrocyte in the co-culture system via inducing MMP-13 expression in FLS, thus enhancing collagen degradation and playing a role in RA-related cartilage injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app