Add like
Add dislike
Add to saved papers

Biological and chemical strategies for exploring inter- and intra-kingdom communication mediated via bacterial volatile signals.

Airborne chemical signals emitted by bacteria influence the behavior of other bacteria and plants. We present an overview of in vitro methods for evaluating bacterial and plant responses to bacterial volatile compounds (BVCs). Three types of equipment have been used to physically separate the bacterial test strains from either other bacterial strains or plants (in our laboratory we use either Arabidopsis or tobacco plant seedlings): a Petri dish containing two compartments (BI Petri dish); two Petri dishes connected with tubing; and a microtiter-based assay. The optimized procedure for the BI Petri dish system is described in this protocol and can be widely used for elucidation of potential function in interactions between diverse microbes and those plant and chemical volatiles emitted by bacteria that are most likely to mediate bacterial or plant responses to BVCs. We also describe a procedure for metabolome-based BVC profiling via dynamic (i.e., continuous airflow) or static headspace sampling using solid-phase microextraction (SPME). Using both these procedures, bacteria-bacteria communications and bacteria-plant interactions mediated by BVCs can be rapidly investigated (within 1-4 weeks).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app