Add like
Add dislike
Add to saved papers

Removal of potentially toxic elements from aqueous solutions and industrial wastewater using activated carbon.

Water contamination with potentially toxic elements (PTEs) has become one of the key issues in recent years that threatens human health and ecological systems. The present study is aimed at removing PTEs like cadmium (Cd), chromium (Cr), copper (Cu) and lead (Pb) from aqueous solutions and industrial wastewater using activated carbon (AC) as an adsorbent through different batch and column experiments. Results demonstrated that the removal of PTEs from aqueous solutions was highly pH dependent, except for Cr, and the maximum removal (>78%) was recorded at pH 6.0. However, maximum Cr removal (82.8%) was observed at pH 3.0. The adsorption reached equilibrium after 60 min with 2 g of adsorbent. Coefficient (R2 ) values suggested by the Langmuir isotherm model were 0.97, 0.96, 0.93 and 0.95 for Cd, Cr, Cu and Pb, respectively, indicating the fit to this model. In column experiments, the maximum removal of PTEs was observed at an adsorbent bed height of 20 cm with the optimal flow rate of 3.56 mL/min. Furthermore, PTEs removal by AC was observed in the order of Cu > Cd > Pb > Cr. Findings from this study suggest that AC could be used as a promising adsorbent for simultaneously removing several PTEs from wastewaters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app