Add like
Add dislike
Add to saved papers

Confinement of carbon nanotube enabled multi-strand helices of polyacetylenes.

Nanotechnology 2017 October 21
Molecular dynamics simulations demonstrate that several polyacetylene (PA) chains can encapsulate and self-assemble into multi-stranded helical structures in confined inner space of carbon nanotubes (SWCNTs). The driving van der Waals force and curvature provided by the tube wall enable polymers to bend and spiral to maximize the π-π stacking area with the tube wall when filling the inside of the SWCNT. Structural forms and knitting patterns of multiple helices are influenced by the combined effect of the tube space, the number of PA chains and the temperature. The knitting pattern of a six-helix is unique and a knitted six-helix can exist steadily after removing the SWCNT while a two- to five-helix will recover intrinsic straight configurations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app