Add like
Add dislike
Add to saved papers

Nanostructured as-deposited indium tin oxide thin films for broadband antireflection and light trapping.

Nanotechnology 2017 August 12
Indium tin oxide (ITO) thin films were sputter-deposited at ambient temperature on a glass-like substrate that was periodically nanostructured by UV nanoimprint lithography. Cross gratings of the corrugated and conformal ITO, with different periods and modulation depths, were tailored to exhibit light trapping or antireflection properties at specific spectral windows by combined optical simulations and experiments. For dense gratings, the light transmission in the 450-850 nm range was enhanced by 8% (absolute) compared to flat ITO films, which is one of the largest performance improvements reported in the literature for nanostructured transparent electrodes. Increasing the grating period shifts the threshold for diffraction coupling to waveguide modes in the visible and near infrared part of the spectrum, resulting in broad light trapping behaviour at wavelengths below this threshold. This work demonstrates a simple processing route at ambient temperature for the fabrication of high-performance transparent electrodes in order to fulfil different device requirements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app