Add like
Add dislike
Add to saved papers

Ionization Capabilities of Hydronium Ions and High Electric Fields Produced by Atmospheric Pressure Corona Discharge.

Atmospheric pressure corona discharge (APCD) was applied to the ionization of volatile organic compounds. The mass spectra of analytes having aromatic, phenolic, anilinic, basic and aliphatic in nature were obtained by using vapor supply and liquid smear supply methods. The vapor supply method mainly gave protonated analytes [A+H](+) caused by proton transfer from hydronium ion H3O(+), except for benzene, toluene and n-hexane that have lower proton affinity. The use of the liquid smear supply method resulted in the formation of molecular ion A(·+) and/or dehydride analyte [A-H](+), according to the nature of analytes used. The formation of A(·+) without fragment ions could be explained by the electron tunneling via high electric fields 10(8) V/m at the tip of the corona needle. The dehydride analytes [A-H](+) observed in the mass spectra of n-hexane, di- and tributylamines may be explained by the hydride abstraction from the alkyl chains by the hydronium ion. The hydronium ion can play the two-roles for analytes, i.e., the proton donor to form [A+H](+) and the hydride acceptor to form [A-H](+).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app