Add like
Add dislike
Add to saved papers

The early metabolomic response of adipose tissue during acute cold exposure in mice.

Scientific Reports 2017 June 15
To maintain core body temperature in cold conditions, mammals activate a complex multi-organ metabolic response for heat production. White adipose tissue (WAT) primarily functions as an energy reservoir, while brown adipose tissue (BAT) is activated during cold exposure to generate heat from nutrients. Both BAT and WAT undergo specific metabolic changes during acute cold exposure. Here, we use an untargeted metabolomics approach to characterize the initial metabolic response to cold exposure in multiple adipose tissue depots in mice. Results demonstrate dramatically distinct metabolic responses during cold exposure in BAT and WAT. Amino acids, nucleotide pathways, and metabolites involved in redox regulation were greatly affected 4 hours post-exposure in BAT, while no polar metabolites were observed to significantly change in WAT depots up to 6 hours post exposure. Lipid metabolism was activated early (2 hours) in both BAT and the subcutaneous WAT depots, with the most striking change being observed in the modulation of diglyceride and monoglyceride levels in BAT. Overall, these data provide a timeline of global thermogenic metabolism in adipose depots during acute cold exposure. We have highlighted differences in visceral and subcutaneous WAT thermogenic metabolism and demonstrate the distinct metabolism of BAT during cold exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app