Add like
Add dislike
Add to saved papers

[Mechanism of heart and lung injury induced by cerebral ischemia/reperfusion in both young and old mice].

Objective To study the mechanism of heart and lung injury after cerebral ischemia/reperfusion in mice. Methods C57BL/6J mice were divided into young and old groups according to their ages, the former being 5-6 months old and the latter being 20-21 months old. Each group was divided into five subgroups subjected to sham operation, middle cerebral artery occlusion for 1-hour ischemia followed by 1-, 12-, 24-, 48-hour reperfusion. At different reperfusion time, HE and TUNEL staining were used to observe the morphological changes of heart and lung tissues; meanwhile, chemical colorimetry was performed to determine the changes of cardiac Na(+)-K(+)-ATPase and Ca(2+)-ATPase; the lung indexes were evaluated; the levels of nuclear factor (NF)-κBp65, p-NF-κBp65, IκBα, p-IκBα were detected by Western blotting; the levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) were determined by ELISA; and the release of NO was examined by colorimetry. Results We observed inflammatory responses in the lung tissues of young and old mice at 24-hour reperfusion and 1-hour reperfusion, respectively, and hemorrhage in the heart tissues of young and old mice at 24-hour reperfusion and 12-hour reperfusion, respectively.Lung tissues showed earlier response to the stimulation of cerebral ischemia/reperfusion than heart tissues did. Meanwhile, the results of Na(+)-K(+)-ATPase, Ca(2+)-ATPase, lung index, NF-κB signaling pathway and inflammatory cytokines in young and old mice were consistent with histological changes of heart and lung tissues. Conclusion Cerebral ischemia/reperfusion can cause heart and lung tissue injury in the old mice, and energy metabolism and inflammation cascade are the main mechanisms of the injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app