JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Adenoviral production of interleukin-2 at the tumor site removes the need for systemic postconditioning in adoptive cell therapy.

Systemic high dose interleukin-2 (IL-2) postconditioning has long been utilized in boosting the efficacy of T cells in adoptive cell therapy (ACT) of solid tumors. The resulting severe off-target toxicity of these regimens renders local production at the tumor an attractive concept with possible safety gains. We evaluated the efficacy and safety of intratumorally administered IL-2-coding adenoviruses in combination with tumor-infiltrating lymphocyte therapy in syngeneic Syrian hamsters bearing HapT1 pancreatic tumors and with T cell receptor transgenic ACT in B16.OVA melanoma bearing C57BL/6 mice. The models are complementary: hamsters are semi-permissive for human oncolytic adenovirus, whereas detailed immunological analyses are possible in mice. In both models, local production of IL-2 successfully replaced the need for systemic recombinant IL-2 (rIL-2) administration and increased the efficacy of the cell therapy. Furthermore, vectored delivery of IL-2 significantly enhanced the infiltration of CD8+ T cells, M1-like macrophages, and B-cells while systemic rIL-2 increased CD25 + FoxP3+ T cells at the tumor. In contrast with vectored delivery, histopathological analysis of systemic rIL-2-treated animals revealed significant changes in lungs, livers, hearts, spleens, and kidneys. In summary, local IL-2 production results in efficacy and safety gains in the context of ACT. These preclinical assessments provide the rationale for ongoing clinical translation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app