Add like
Add dislike
Add to saved papers

Copper and nickel co-treatment alters metal uptake and stress parameters of Salix purpurea×viminalis.

Simultaneous treatment of Salix purpurea×viminalis with copper (Cu2+ ) and nickel (Ni2+ ) altered metal phytoextraction rates in favor of leaves. Still, metal translocation patters remained unaffected (roots≈rods>leaves≥shoots), reaching ∼20 and 14.5mgkg-1 dry weight in roots for Cu and Ni, respectively. Biometric parameters revealed overall growth inhibition correlated with Cu content in leaves, thus proving its negative effect on photosynthesis. Metal toxicity was strongly affirmed in the case of roots (∼90% loss of root biomass at 3mM), rather than in the above-ground organs. Plant treatment accelerated the accumulation of soluble carbohydrates, phenolics including salicylic acid and glutathione in Salix leaves. However, significant differences in plant reactions to the applied metals were noted. Metal accumulation in leaves was correlated with soluble sugars and elevated glutathione, and also with total phenolics content, in the case of Cu and Ni, respectively. Glutathione synthesis was induced by both metals, and correlated with salicylic acid in leaves of Ni-treated plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app