Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Investigating Liquid-Liquid Phase Separation of a Monoclonal Antibody Using Solution-State NMR Spectroscopy: Effect of Arg·Glu and Arg·HCl.

Liquid-liquid phase separation (LLPS) of monoclonal antibody (mAb) formulations involves spontaneous separation into dense (protein-rich) and diluted (protein-lean) phases and should be avoided in the final drug product. Understanding the factors leading to LLPS and ways to predict and prevent it would therefore be highly beneficial. Here we describe the link between LLPS behavior of an IgG1 mAb (mAb5), its solubility, and parameters extracted using 1 H NMR spectroscopy, for various formulations. We show that the formulations demonstrating least LLPS lead to the largest mAb5 NMR signal intensities. In the formulations exhibiting the highest propensity to phase-separate the mAb NMR signal intensities are the lowest, even at higher temperatures without visible phase separation, suggesting a high degree of self-association prior to distinct phase separation. Addition of arginine glutamate prevented LLPS and led to a significant increase in the observed mAb signal intensity, whereas the effect of arginine hydrochloride was only marginal. Solution NMR spectroscopy was further used to characterize the protein-lean and protein-rich phases separately and demonstrated that protein self-association in the protein-rich phase can be significantly reduced by arginine glutamate. Solution NMR spectroscopy may be useful as a tool to assess the propensity of mAb solutions to phase-separate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app