JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Trafficking and regulation of the NKCC2 cotransporter in the thick ascending limb.

PURPOSE OF REVIEW: The kidney Na-K-2Cl cotransporter (NKCC2) is essential for urinary concentration and renal electrolyte handling. Loss of function mutations in the NKCC2 gene cause urinary salt and potassium wasting, whereas excessive NKCC2 function has been linked to high blood pressure. Loop diuretics, targeting the transporter, are instrumental for relieving edema or hypertension. This review focuses on intrinsic mechanisms regulating NKCC2 activity at the posttranslational level, namely its trafficking and phosphorylation.

RECENT FINDINGS: Protein networks mediating cellular turnover of NKCC2 have recently received major attention. Several key components of its apical trafficking were identified, including respective chaperones, SNARE protein family members and raft-associated proteins. NKCC2 internalization has been characterized qualitatively and quantitatively. Kinase and phosphatase pathways regulating NKCC2 activity have been clarified and links between NKCC2 phosphorylation and trafficking proposed. Constitutive and inducible NKCC2 trafficking and phosphorylation mechanisms have been specified with focus on endocrine control of thick ascending limb (TAL) function by vasopressin.

SUMMARY: Proper NKCC2 trafficking and phosphorylation are critical to the TAL function in the physiological context of urinary concentration and extracellular volume regulation. Clarification of the underlying mechanisms and respective protein networks may open new therapeutic perspectives for better management of renal electrolyte disorders and blood pressure control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app