Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Propofol Affects Neurodegeneration and Neurogenesis by Regulation of Autophagy via Effects on Intracellular Calcium Homeostasis.

Anesthesiology 2017 September
BACKGROUND: In human cortical neural progenitor cells, we investigated the effects of propofol on calcium homeostasis in both the ryanodine and inositol 1,4,5-trisphosphate calcium release channels. We also studied propofol-mediated effects on autophagy, cell survival, and neuro- and gliogenesis.

METHODS: The dose-response relationship between propofol concentration and duration was studied in neural progenitor cells. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase release assays. The effects of propofol on cytosolic calcium concentration were evaluated using Fura-2, and autophagy activity was determined by LC3II expression levels with Western blot. Proliferation and differentiation were evaluated by bromodeoxyuridine incorporation and immunostaining with neuronal and glial markers.

RESULTS: Propofol dose- and time-dependently induced cell damage and elevated LC3II expression, most robustly at 200 µM for 24 h (67 ± 11% of control, n = 12 to 19) and 6 h (2.4 ± 0.5 compared with 0.6 ± 0.1 of control, n = 7), respectively. Treatment with 200 μM propofol also increased cytosolic calcium concentration (346 ± 71% of control, n = 22 to 34). Propofol at 10 µM stimulated neural progenitor cell proliferation and promoted neuronal cell fate, whereas propofol at 200 µM impaired neuronal proliferation and promoted glial cell fate (n = 12 to 20). Cotreatment with ryanodine and inositol 1,4,5-trisphosphate receptor antagonists and inhibitors, cytosolic Ca chelators, or autophagy inhibitors mostly mitigated the propofol-mediated effects on survival, proliferation, and differentiation.

CONCLUSIONS: These results suggest that propofol-mediated cell survival or neurogenesis is closely associated with propofol's effects on autophagy by activation of ryanodine and inositol 1,4,5-trisphosphate receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app