Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Dioxygen: What Makes This Triplet Diradical Kinetically Persistent?

Experimental heats of formation and enthalpies obtained from G4 calculations both find that the resonance stabilization of the two unpaired electrons in triplet O2 , relative to the unpaired electrons in two hydroxyl radicals, amounts to 100 kcal/mol. The origin of this huge stabilization energy is described within the contexts of both molecular orbital (MO) and valence-bond (VB) theory. Although O2 is a triplet diradical, the thermodynamic unfavorability of both its hydrogen atom abstraction and oligomerization reactions can be attributed to its very large resonance stabilization energy. The unreactivity of O2 toward both these modes of self-destruction maintains its abundance in the ecosphere and thus its availability to support aerobic life. However, despite the resonance stabilization of the π system of triplet O2 , the weakness of the O-O σ bond makes reactions of O2 , which eventually lead to cleavage of this bond, very favorable thermodynamically.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app