Add like
Add dislike
Add to saved papers

A simplified lung ultrasound approach to detect increased extravascular lung water in critically ill patients.

BACKGROUND: The quantification of B-lines at lung ultrasonography is a valid tool to estimate the extravascular lung water (EVLW) in patients after major cardiac surgery. However, there is still uncertainty about the correlation between B-lines and EVLW in a general population of critically ill.

AIM: To evaluate a simplified lung ultrasonographic assessment as a tool to estimate the EVLW in critically ill patients admitted to a polyvalent intensive care unit (ICU).

METHODS: Nineteen consecutive critically ill patients requiring mechanical ventilation and hemodynamic monitoring were enrolled. Lung ultrasonography and the thermodilution methodology (PiCCO system) were performed by two independent operators. The positive scan at lung ultrasound was defined by visualization of at least 3 B-lines. We then compared the number of chest areas positive for B-lines with the EVLW index obtained by the invasive procedure.

RESULTS: A significant correlation was found between the number of lung quadrants positive for B-lines and EVLW indexed using both actual body weight (rho = 0.612 p = 0.0053) and predicted body weight (rho = 0.493 p = 0.032). Presence of more than 3 positive lung quadrants showed a good performance in identifying an EVLW index value >10 ml/kg of actual body weight(area under the ROC 0.894; 95% CI 0.668-0.987 p < 0.0001). Presence of of more than 4 positive lung quadrants indentified an EVLW index value >10 ml/kg of predicted body weight (area under the ROC 0.8; 95% CI 0.556-0.945 p = 0.0048).

CONCLUSION: A simplified lung ultrasound approach can by used as a reliable noninvasive bedside tool to predict EVLW in emergency and critically ill patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app