Add like
Add dislike
Add to saved papers

Effects of photobiomodulation therapy on Bothrops moojeni snake-envenomed gastrocnemius of mice using enzymatic biomarkers.

Bothropic venom contains a range of biologically active substances capable of causing severe local and systemic envenoming symptomatology within its victims. The snake anti-venom is effective against systemic effects but has no neutralizing effect against the fast developing local effects. Herein, mice gastrocnemius injected with Bothrops moojeni venom (40 μg/kg) or saline solution were irradiated with HeNe (632.8 nm) and GaAs (904 nm) lasers (daily energy density of 4 J/cm2 ; 0.03/0.21 power density; 0.07/0.16 spot size; 1.2/0.04 total energy, 1 cm off contact, for HeNe and GaAs lasers, respectively) and euthanized in periods ranging from 3 h to 21 days. Blood biochemistry for creatine kinase (CK), alkaline phosphatase (ALP), acid phosphatase (AP), lactate dehydrogenase (LDH), aspartate transaminase (AST), and myoglobin and histopathological analysis, for assessing the degree of myonecrosis and regeneration of gastrocnemius, were done at every time interval. GaAs laser promoted faster photobiomodulation therapy (PBMT) effects, and the GaAs group exhibited a better clinical outcome than the HeNe group. Within the GaAs group, the serum levels of CK, LDH, AP, AST, and myoglobin, which were increased by the physiological effects of the venom, were reduced to initial baseline before snake envenomation in less time than those irradiated by the HeNe laser. However, the group receiving irradiation from the HeNe laser returned the levels of ALP activity to baseline faster than those of the GaAs group. Histopathological analysis revealed enhanced muscle regeneration in mice groups treated with both lasers. PBM promoted by GaAs and HeNe showed well-developed centrally nucleate regenerating cells and an increased number of newly formed blood vessels when compared to unirradiated muscle. We therefore suggest that GaAs had the best outcomes likely derived from a deeper penetrating longer wavelength. We conclude that PMBT is a promising, non-invasive approach to be further tested in pre-clinical studies with a goal to further its clinical use in skeletal muscle recovery in snakebite victims.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app