Add like
Add dislike
Add to saved papers

Automatic optimization of drug cocktails on an integrated microfluidic system.

Drug cocktails have been popular for a variety of therapies of complicated diseases. Nevertheless, it is a tediously challenging task to optimize formulations, especially using traditional methods. Hence, an automatic system capable of precise dispensing multiple drugs is of great need. Herein, a new integrated microfluidic system combined with a two-axis traverse module was developed to dispense and mix a small amount of drug combination precisely and automatically. This on-chip dispensing process could be performed with a precise and accurate manner when compared to the manual operations. The efficacy of both single and multiple drugs could be examined through the developed microfluidic system with extremely low variation of drug formulations. Analysis of cell viabilities for normal and tumor cells was also performed to verify potential drug combinations. It is envisioned that this automatic system, which is flexible to combine with standard cell analysis methods and novel drug formulation algorithm, could provide precise and high-throughput drug cocktail formulations and expedite the drug screening processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app