Add like
Add dislike
Add to saved papers

Domain wall motion in Pb(Zr0.20Ti0.80)O3 epitaxial thin films.

Scientific Reports 2017 June 14
Two Pb(Zr0.20Ti0.80)O3 samples of different thickness and domain configuration have been studied. The c-domain sample was found to have a higher coercive field E c and higher dielectric losses than the other which presents approximately 60% of c-domains and 40% of a-domains as observed by piezo force microscopy (PFM) characterization. Hyperbolic law measurements reveal that the higher coercive field is due to domain wall pinning in deeper defects and hence a higher field E th is required for unpinning. The dissipation factors due to domain wall motion, however, are similar in both samples since the domain wall density is low and there is almost no interaction between domain walls. The higher dielectric losses in the c-domain oriented sample are a result of a greater contribution from the lattice and seem to be due to strain from the substrate, which is not relieved in a thin sample. PFM and dielectric characterization are complementary methods which provide a better understanding of the domain wall motion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app