Add like
Add dislike
Add to saved papers

Endogenous IL-33 has no effect on the progression of fibrosis during experimental steatohepatitis.

Oncotarget 2017 July 26
Interleukin (IL)-33 has been recently reported to be strongly pro-fibrogenic in various models of liver disease. Our aim was to study the role of endogenous IL-33 in a diet-induced model of steatohepatitis. IL-33 deficient mice and wild type (WT) littermates received a high-fat diet (HFD), or a standard diet for 12 weeks. The HFD-induced steatohepatitis was associated with an upregulation of IL-33 transcripts and protein. An insulin tolerance test revealed lower systemic insulin sensitivity in IL-33-/-HFD mice than in WT-HFD mice. Nevertheless, IL-33 deficiency did not affect the severity of liver inflammation by histological and transcriptomic analyses, nor the quantity of liver fibrosis. Livers from HFD mice had more myeloid populations, markedly fewer NKT cells and higher proportion of ST2+ Treg cells and ST2+ type 2 innate lymphoid cells (ILC2), all unaffected by IL-33 deficiency. In conclusion, deficiency of endogenous IL-33 does not affect the evolution of experimental diet-induced steatohepatitis towards liver fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app