Add like
Add dislike
Add to saved papers

Seedling response to environmental variability: The relationship between phenotypic plasticity and evolutionary history in closely related Eucalyptus species.

PREMISE OF THE STUDY: Phenotypic plasticity is an important means through which organisms cope with environmental variability. We investigated seedling plasticity in the green ash eucalypts within a phylogenetic framework to examine the relationship between plasticity and evolutionary history. The green ashes are a diverse group, which include the tallest flowering plant in the world (Eucalyptus regnans) and a rare mallee less than 1 m tall (E. cunninghamii).

METHODS: Seedlings of 12 species were exposed to high and low nutrient and water availability in a factorial experiment. Leaf trait and total plant plasticity were evaluated using the phenotypic plasticity index. A phylogeny of the species was estimated using genome-wide scans.

KEY RESULTS: We found significant differences in functional traits across species, growth forms, and substrates in response to changes in resource availability. Many traits (e.g., leaf width) were highly plastic for most species. Interspecific differences in leaf-level plasticity was significant, however plasticity was not correlated with phylogeny. Species with broader environmental niches had higher leaf-level plasticity than species with narrower environmental ranges.

CONCLUSIONS: Plastic responses to environmental variability can differ widely among closely related species, and plasticity is therefore likely to be associated with many factors, including habitat and range size, as well as evolutionary history. Our results provided insights for species delimitation in Eucalyptus, which have management implications. Because of the high number of rare species and that other species are commercially important, a more comprehensive understanding of plasticity is essential for predicting their response to changing climates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app