Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Central administration of GLP-1 and GIP decreases feeding in mice.

Glucagon-like peptide-1 amide (GLP-1) and gastric inhibitory polypeptide (GIP) are incretin hormones regulating energy metabolism. GLP-1 and GIP combination is suggested as a promising therapeutic strategy for treatment of obesity and diabetes. However, the neuronal mechanisms are not yet investigated. In the present study, we investigated the role of central GLP-1 and GIP in regulation of body weight homeostasis. The effect of GLP-1 with GIP on food intake, body weight, locomotor activity were determined following intracerebroventricular (ICV) administration of GLP-1 and/or GIP in mice. ICV administration of low dose GLP-1 (0.3 nmol) and GIP (1 and 3 nmol) did not change food intake. However, ICV administration of higher doses GLP-1 (1 and 3 nmol) and GIP (6 nmol) significantly decreased food intake and body weight. To investigate the synergic effect of ICV GLP-1 and GIP, subeffective dose GLP-1 (0.3 nmol) and subeffective dose GIP (1 nmol) were chosen for further co-administration study. ICV co-administration of GLP-1 and GIP significantly decreased food intake, body weight and drinking. ICV co-administration of GLP-1 and GIP significantly increased neuronal activation and pro-opiomelanocortin (POMC) expression in hypothalamic arcuate nucleus. The neuronal activation and POMC expression were observed in two distinct neuronal populations. These results provide neuronal mechanisms supporting the development of GLP-1 and GIP combination therapeutics for treatment of obesity and diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app